
Complete Guide to a Professional Project Workflow

Social Networks Course - Fall 2025

September 29, 2025

Contents
1 Introduction 2

2 Part 1: Prerequisites and System Setup 2
2.1 Installing Core Tools . 2
2.2 Initial Git Configuration . 2
2.3 Creating a Python Virtual Environment 2

3 Part 2: The Complete Workflow from Issue to Merge 3
3.1 Step 1: Create and Clone a Repository . 3
3.2 Step 2: Define a Task with an Issue . 3
3.3 Step 3: Create a Branch Connected to the Issue 3
3.4 Step 4: Fetch the New Branch and Start Coding 3
3.5 Step 5: Committing with Professional Standards 4
3.6 Step 6: Synchronize with GitHub (Sync/Push) 4
3.7 Step 7: Create a Pull Request (PR) . 4
3.8 Step 8: Review and Merge . 5

4 Part 3: Documentation and Project Structure 5
4.1 The README.md File . 5
4.2 The .gitignore File . 5

5 Part 4: Best Practices for Code and Testing 6
5.1 Code Structure: Functional vs. Object-Oriented 6
5.2 .ipynb Files (Jupyter Notebooks) . 6
5.3 Testing Strategies for Reliability . 6

6 Part 5: Responsible Use of Artificial Intelligence (AI) 6

7 Part 6: Useful Resources and Links 7

1

1 Introduction
This guide has been prepared to standardize the process of completing course projects
and to familiarize you with the professional workflow used in the software development
industry. Following these steps will not only help you achieve a better grade but will also
prepare you for the job market.

2 Part 1: Prerequisites and System Setup
Before you begin, you must install the necessary tools and prepare your system.

2.1 Installing Core Tools
• Python: Download and install the latest stable version from the official python.org

website. Important: During installation, make sure to check the box for Add
Python to PATH.

• Git: The version control tool that is the foundation of our work. Download and
install it from the git-scm.com website.

• Code Editor (VS Code): We recommend using Visual Studio Code, which inte-
grates well with Git.

2.2 Initial Git Configuration
After installing Git, open a terminal (or Git Bash on Windows) and run the following
commands with your own information. This information will be recorded in your commits.

git config --global user.name "Your Name"
git config --global user.email "your.email@example.com"

2.3 Creating a Python Virtual Environment
Always create your Python projects within a virtual environment to keep their libraries
and dependencies separate from other projects.

1. In your terminal, navigate to your project folder.

2. Run the following command to create a virtual environment:

python -m venv venv

3. To activate it:

• On Windows: venv

• On macOS/Linux: source venv/bin/activate

2

https://www.python.org/downloads/
https://git-scm.com/downloads/
https://code.visualstudio.com/

3 Part 2: The Complete Workflow from Issue to
Merge

This process is the beating heart of a standard project.

3.1 Step 1: Create and Clone a Repository
First, create a private repository on GitHub named Social-Network-Fall-2025. Then,
copy its URL and clone it to your system with the following command:

git clone <YOUR_REPOSITORY_URL>

3.2 Step 2: Define a Task with an Issue
Go to your repository page on GitHub and navigate to the Issues tab. Create a New
issue.

• Title: Write a short and descriptive title for the task (e.g., "Implement sentiment
analysis function").

• Description: Provide full details of the task, including expected inputs and out-
puts.

3.3 Step 3: Create a Branch Connected to the Issue
On the issue page you just created, find the Create a branch option in the right-hand
menu. Click it. GitHub will automatically create a branch with a name related to the
issue number and title.

3.4 Step 4: Fetch the New Branch and Start Coding
1. In VS Code, open the terminal and run the following command to fetch new infor-

mation (including the new branch) from the server:

git fetch origin

2. Now, switch to the new branch:

git checkout <new-branch-name>

Tip: In VS Code, you can also easily switch branches from the bottom-left corner.

3

https://github.com

3.5 Step 5: Committing with Professional Standards
Write your code. Whenever you reach a logical and stable point, create a commit. Com-
mits should be small and atomic.

• Commit Message Standard (Conventional Commits): Your commit message
should follow this structure:

type(scope): description

– type: Specifies the kind of change. Common types:
∗ feat: A new feature
∗ fix: A bug fix
∗ docs: Documentation only changes
∗ style: Code style changes (formatting, etc.)
∗ refactor: A code change that neither fixes a bug nor adds a feature
∗ test: Adding or correcting tests

– scope (optional): The section of the codebase affected (e.g., ‘dataloader‘, ‘api‘).

– description: A short, imperative summary of the change (e.g., "add function
to parse user data").

• Committing Steps:

Add changed files to the staging area
git add .

Commit with a standard message
git commit -m "feat(parser): add function to parse user data"

3.6 Step 6: Synchronize with GitHub (Sync/Push)
After a few commits, send your changes to the GitHub server:

git push origin <your-branch-name>

3.7 Step 7: Create a Pull Request (PR)
When your work on the branch is complete, go to your GitHub page. GitHub will show
you a prompt to create a Pull Request. Click it.

• Write a clear title and description for the PR. In the description, reference the issue
this PR resolves (e.g., Closes #1).

• Ask your teammates (or in this course, the TAs) to Review your code.

4

3.8 Step 8: Review and Merge
After your code is approved, the project manager (or you) will merge it into the main
branch (main).

• Best Practice: Use the Squash and merge option. This combines all your
branch’s commits into a single, clean commit on the main branch, keeping the
project history readable.

4 Part 3: Documentation and Project Structure

4.1 The README.md File
This file is your project’s storefront. It’s the first thing people see when they visit your
repository.

• Markdown (.md) Basics:

– # Heading 1, ## Heading 2

– *italic* or _italic_

– **bold** or __bold__

– Lists with * or -

– Code blocks: ``p̀ython ... ``
`

–– ΓLinks : [Link Text](URL)

A good README.md should include:

1. Project title and a short description.

2. Installation and setup instructions (including prerequisites).

3. How to run the code (necessary commands).

4. An explanation of the file and folder structure.

4.2 The .gitignore File
This file tells Git which files and folders to ignore. This is crucial for preventing un-
necessary, large, or sensitive files from being uploaded. A good example for a Python
project:

1 # Python virtual environment
2 venv/
3

4 # Python cache files
5 __pycache__ /
6 *. pyc
7

8 # Datasets - Do not upload large data files!
9 data/

10 *. csv

5

11 *. json
12

13 # IDE and OS files
14 . vscode /
15 . DS_Store
16

5 Part 4: Best Practices for Code and Testing

5.1 Code Structure: Functional vs. Object-Oriented
Your code should be well-structured. Choose one of the following paradigms (or a thought-
ful combination):

• Functional: Functions performing specific tasks, suitable for data processing and
linear workflows.

• Object-Oriented: Classes and objects encapsulating data and behavior, ideal for
modeling complex systems.

Key takeaway: Maintain consistency in your chosen paradigm.

5.2 .ipynb Files (Jupyter Notebooks)
Notebooks are excellent for exploratory data analysis and visualization but are not in-
tended for defining core library functions.

• Recommendation: Implement core logic in .py files and import them into your
notebooks for analysis and presentation.

5.3 Testing Strategies for Reliability
Implement testing to ensure code reliability and correctness. Focus on these key areas:

• Unit Tests: Verify individual components in isolation.

• Integration Tests: Ensure that different parts of the system work together cor-
rectly.

Testing demonstrates a clear understanding of the code’s logic and purpose. Use the
assert statement or testing frameworks like pytest or unittest for more comprehensive
test suites.

6 Part 5: Responsible Use of Artificial Intelligence
(AI)

Using AI tools like ChatGPT or GitHub Copilot for learning and assistance is allowed,
but not for blindly copying code.

• Goal: AI should be your assistant for understanding concepts, debugging, or sug-
gesting structure, not a replacement for your own thinking.

6

• Requirement: If you use AI, you must create a section in your README.md titled
"AI Usage" and include a link to the chat or a brief explanation of how it helped
you. This is a matter of academic integrity.

7 Part 6: Useful Resources and Links
For deeper learning, refer to the following resources:

• Git Tutorial: The free online book Pro Git.

• GitHub Guide: The official GitHub Docs.

• Conventional Commits Standard: The official Conventional Commits website
to learn how to write standard commit messages.

• Markdown Guide: A simple and quick Markdown Guide Cheat Sheet.

• Python Documentation: The official Python documentation, the best source for
learning any part of the language.

• LaTeX Tutorial: To learn more about LATEX, the Overleaf Learn website is an
excellent starting point.

7

https://git-scm.com/book/en/v2
https://docs.github.com/en/get-started
https://www.conventionalcommits.org/en/v1.0.0/
https://www.markdownguide.org/cheat-sheet/
https://docs.python.org/3/
https://www.overleaf.com/learn

	Introduction
	Part 1: Prerequisites and System Setup
	Installing Core Tools
	Initial Git Configuration
	Creating a Python Virtual Environment

	Part 2: The Complete Workflow from Issue to Merge
	Step 1: Create and Clone a Repository
	Step 2: Define a Task with an Issue
	Step 3: Create a Branch Connected to the Issue
	Step 4: Fetch the New Branch and Start Coding
	Step 5: Committing with Professional Standards
	Step 6: Synchronize with GitHub (Sync/Push)
	Step 7: Create a Pull Request (PR)
	Step 8: Review and Merge

	Part 3: Documentation and Project Structure
	The README.md File
	The .gitignore File

	Part 4: Best Practices for Code and Testing
	Code Structure: Functional vs. Object-Oriented
	.ipynb Files (Jupyter Notebooks)
	Testing Strategies for Reliability

	Part 5: Responsible Use of Artificial Intelligence (AI)
	Part 6: Useful Resources and Links

